Design of a High-Speed OFDM-SAC-OCDMA-Based FSO System Using EDW Codes for Supporting 5G Data Services and Smart City Applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019359" target="_blank" >RIV/62690094:18470/22:50019359 - isvavai.cz</a>
Result on the web
<a href="https://www.frontiersin.org/articles/10.3389/fphy.2022.934848/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fphy.2022.934848/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fphy.2022.934848" target="_blank" >10.3389/fphy.2022.934848</a>
Alternative languages
Result language
angličtina
Original language name
Design of a High-Speed OFDM-SAC-OCDMA-Based FSO System Using EDW Codes for Supporting 5G Data Services and Smart City Applications
Original language description
A novel free space optics (FSO) system is introduced in this article by combining orthogonal frequency division multiplexing (OFDM) with spectral amplitude coding optical code division multiple access (SAC-OCDMA) to be implemented in 5G technology and smart cities. Enhanced double-weight (EDW) codes are used as signature codes, while for the detection technique, single photodiode detection (SPD) is applied for the SAC-OCDMA system. OFDM with a four-quadrature amplitude modulation (4-QAM) scheme is assigned to the three users in the SAC-OCDMA system, each carrying 15 Gbps. Adverse weather conditions, such as clear, fog, haze, rain, and dust storm, that affect the FSO channel are considered. The performance of the proposed system is evaluated in terms of log of bit error rate and received power at different propagation distances. The simulation results show successful transmission of 3 x 15 Gbps with a propagation range of 3.45 km under clear air and 1.316, 1.045, and 0.7 km under rain conditions (light, medium, and heavy rain) with a received power of -12.6 dBm. As for haze conditions, the range and received power are 2.391 km with -13 dBm for low haze, 1.591 km with -12.7 dBm for medium haze, and 1.025 km with -12.6 dBm for heavy haze. The range is reduced and becomes 1.085, 0.784, and 0.645 km under fog conditions (light, medium, and heavy fog) with -12.6 dBm received power. Furthermore, the system achieved a range of 0.681, 0.232, and 0.102 km under dust conditions (light, medium, and heavy dust) with a received power of -16 dBm.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FRONTIERS IN PHYSICS
ISSN
2296-424X
e-ISSN
2296-424X
Volume of the periodical
10
Issue of the periodical within the volume
červenec
Country of publishing house
CH - SWITZERLAND
Number of pages
11
Pages from-to
"Article Number: 934848"
UT code for WoS article
000829709300001
EID of the result in the Scopus database
—