Dunkl-Klein-Gordon Equation in Three-Dimensions: The Klein-Gordon Oscillator and Coulomb Potential
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019498" target="_blank" >RIV/62690094:18470/22:50019498 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00601-022-01776-8" target="_blank" >https://link.springer.com/article/10.1007/s00601-022-01776-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00601-022-01776-8" target="_blank" >10.1007/s00601-022-01776-8</a>
Alternative languages
Result language
angličtina
Original language name
Dunkl-Klein-Gordon Equation in Three-Dimensions: The Klein-Gordon Oscillator and Coulomb Potential
Original language description
Recent studies show that deformations in quantum mechanics are inevitable. In this contribution, we consider a relativistic quantum mechanical differential equation in the presence of Dunkl operator-based deformation and we investigate solutions for two important problems in three-dimensional spatial space. To this end, after introducing the Dunkl quantum mechanics, we examine the Dunkl-Klein-Gordon oscillator solutions with the Cartesian and spherical coordinates. In both coordinate systems, we find that the differential equations are separable and their eigenfunctions can be given in terms of the associate Laguerre and Jacobi polynomials. We observe how the Dunkl formalism is affecting the eigenvalues as well as the eigenfunctions. As a second problem, we examine the Dunkl-Klein-Gordon equation with the Coulomb potential. We obtain the eigenvalue, their corresponding eigenfunctions, and the Dunkl-fine structure terms.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10303 - Particles and field physics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Few-Body Systems
ISSN
0177-7963
e-ISSN
1432-5411
Volume of the periodical
63
Issue of the periodical within the volume
4
Country of publishing house
AT - AUSTRIA
Number of pages
9
Pages from-to
"Article Number: 74"
UT code for WoS article
000862419000001
EID of the result in the Scopus database
2-s2.0-85139266599