On the spectrum of convolution operator with a potential
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020479" target="_blank" >RIV/62690094:18470/23:50020479 - isvavai.cz</a>
Result on the web
<a href="https://linkinghub.elsevier.com/retrieve/pii/S0022247X22005820" target="_blank" >https://linkinghub.elsevier.com/retrieve/pii/S0022247X22005820</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2022.126568" target="_blank" >10.1016/j.jmaa.2022.126568</a>
Alternative languages
Result language
angličtina
Original language name
On the spectrum of convolution operator with a potential
Original language description
This paper focuses on the spectral properties of a bounded self-adjoint operator in L-2(R-d) being the sum of a convolution operator with an integrable convolution kernel and an operator of multiplication by a continuous potential converging to zero at infinity. We study both the essential and the discrete spectra of this operator. It is shown that the essential spectrum of the sum is the union of the essential spectrum of the convolution operator and the image of the potential. We then provide a number of sufficient conditions for the existence of discrete spectrum and obtain lower and upper bounds for the number of discrete eigenvalues. Special attention is paid to the case of operators possessing countably many points of the discrete spectrum. We also compare the spectral properties of the operators considered in this work with those of classical Schrodinger operators. (c) 2022 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of mathematical analysis and applications
ISSN
0022-247X
e-ISSN
1096-0813
Volume of the periodical
517
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
27
Pages from-to
"Article Number: 126568"
UT code for WoS article
000999834100007
EID of the result in the Scopus database
2-s2.0-85135856990