Addressing feature selection and extreme learning machine tuning by diversity-oriented social network search: an application for phishing websites detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020596" target="_blank" >RIV/62690094:18470/23:50020596 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s40747-023-01118-z" target="_blank" >https://link.springer.com/article/10.1007/s40747-023-01118-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40747-023-01118-z" target="_blank" >10.1007/s40747-023-01118-z</a>
Alternative languages
Result language
angličtina
Original language name
Addressing feature selection and extreme learning machine tuning by diversity-oriented social network search: an application for phishing websites detection
Original language description
Feature selection and hyper-parameters optimization (tuning) are two of the most important and challenging tasks in machine learning. To achieve satisfying performance, every machine learning model has to be adjusted for a specific problem, as the efficient universal approach does not exist. In addition, most of the data sets contain irrelevant and redundant features that can even have a negative influence on the model's performance. Machine learning can be applied almost everywhere; however, due to the high risks involved with the growing number of malicious, phishing websites on the world wide web, feature selection and tuning are in this research addressed for this particular problem. Notwithstanding that many metaheuristics have been devised for both feature selection and machine learning tuning challenges, there is still much space for improvements. Therefore, the research exhibited in this manuscript tries to improve phishing website detection by tuning extreme learning model that utilizes the most relevant subset of phishing websites data sets features. To accomplish this goal, a novel diversity-oriented social network search algorithm has been developed and incorporated into a two-level cooperative framework. The proposed algorithm has been compared to six other cutting-edge metaheuristics algorithms, that were also implemented in the framework and tested under the same experimental conditions. All metaheuristics have been employed in level 1 of the devised framework to perform the feature selection task. The best-obtained subset of features has then been used as the input to the framework level 2, where all algorithms perform tuning of extreme learning machine. Tuning is referring to the number of neurons in the hidden layers and weights and biases initialization. For evaluation purposes, three phishing websites data sets of different sizes and the number of classes, retrieved from UCI and Kaggle repositories, were employed and all methods are compared in terms of classification error, separately for layers 1 and 2 over several independent runs, and detailed metrics of the final outcomes (output of layer 2), including precision, recall, f1 score, receiver operating characteristics and precision-recall area under the curves. Furthermore, an additional experiment is also conducted, where only layer 2 of the proposed framework is used, to establish metaheuristics performance for extreme machine learning tuning with all features, which represents a large-scale NP-hard global optimization challenge. Finally, according to the results of statistical tests, final research findings suggest that the proposed diversity-oriented social network search metaheuristics on average obtains better achievements than competitors for both challenges and all data sets. Finally, the SHapley Additive exPlanations analysis of the best-performing model was applied to determine the most influential features.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMPLEX & INTELLIGENT SYSTEMS
ISSN
2199-4536
e-ISSN
2198-6053
Volume of the periodical
9
Issue of the periodical within the volume
6
Country of publishing house
DE - GERMANY
Number of pages
36
Pages from-to
7269-7304
UT code for WoS article
001017653700001
EID of the result in the Scopus database
2-s2.0-85163322467