Red Panda Optimization Algorithm: An Effective Bio-Inspired Metaheuristic Algorithm for Solving Engineering Optimization Problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50021143" target="_blank" >RIV/62690094:18470/23:50021143 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/10144777" target="_blank" >https://ieeexplore.ieee.org/document/10144777</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3283422" target="_blank" >10.1109/ACCESS.2023.3283422</a>
Alternative languages
Result language
angličtina
Original language name
Red Panda Optimization Algorithm: An Effective Bio-Inspired Metaheuristic Algorithm for Solving Engineering Optimization Problems
Original language description
This paper presents a new bio-inspired metaheuristic algorithm called Red Panda Optimization (RPO) that imitates the natural behaviors of red pandas in nature. The main design idea of RPO is derived from two characteristic natural behaviors of red pandas: (i) foraging strategy, and (ii) climbing trees to rest. The proposed RPO approach is mathematically modeled in two phases of exploration based on the simulation of red pandas' foraging strategy and exploitation based on the simulation of red pandas' movement in climbing trees. The main advantage of the proposed approach is that there is no control parameter in its mathematical modeling, and for this reason, it does not need a parameter adjustment process. The performance of RPO is evaluated on fifty-two standard benchmark functions including unimodal, high-dimensional multimodal, and fixed-dimensional multimodal types as well as CEC 2017 test suite. The optimization results obtained by the proposed RPO approach are compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that RPO, by maintaining the balance between exploration and exploitation, is effective in solving optimization problems and its performance is superior over competitor algorithms. Based on the analysis of the optimization results, RPO has provided more successful performance compared to the competitor algorithms in 100% of unimodal functions, 100% of high-dimensional multimodal functions, 100% of fixed-dimensional multimodal functions, and 86.2% of CEC 2017 test suite benchmark functions. Also, the statistical analysis of the Wilcoxon rank sum test shows that the superiority of RPO in the competition with the compared algorithms is significant from a statistical point of view. In addition, the results of implementing RPO on four engineering design problems confirms the ability of the proposed approach to handle real-world optimization applications.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Volume of the periodical
11
Issue of the periodical within the volume
June
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
57203-57227
UT code for WoS article
001010604800001
EID of the result in the Scopus database
2-s2.0-85161511345