All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparison of artificial intelligence classifiers for SIP attack data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F16%3A10130740" target="_blank" >RIV/63839172:_____/16:10130740 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1117/12.2225292" target="_blank" >http://dx.doi.org/10.1117/12.2225292</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/12.2225292" target="_blank" >10.1117/12.2225292</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparison of artificial intelligence classifiers for SIP attack data

  • Original language description

    Honeypot application is a source of valuable data about attacks on the network. We run several SIP honeypots in various computer networks, which are separated geographically and logically. Each honeypot runs on public IP address and uses standard SIP PBX ports. All information gathered via honeypot is periodically sent to the centralized server. This server classifies all attack data by neural network algorithm. The paper describes optimizations of a neural network classifier, which lower the classification error. The article contains the comparison of two neural network algorithm used for the classification of validation data. The first is the original implementation of the neural network described in recent work; the second neural network uses further optimizations like input normalization or cross-entropy cost function. We also use other implementations of neural networks and machine learning classification algorithms. The comparison test their capabilities on validation data to find the optimal classifier. The article result shows promise for further development of an accurate SIP attack classification engine.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LM2010005" target="_blank" >LM2010005: Large Infrastructure CESNET</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Machine Intelligence and Bio-inspired Computation: Theory and Applications X

  • ISBN

    978-1-5106-0091-1

  • ISSN

    1996-756X

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

  • Publisher name

    SPIE

  • Place of publication

    Bellingham, Washington, US

  • Event location

    Baltimore, Maryland, US

  • Event date

    Apr 17, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000389681700003