All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

DataZoo: Streamlining Traffic Classification Experiments

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F23%3A10133608" target="_blank" >RIV/63839172:_____/23:10133608 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21240/23:00370023

  • Result on the web

    <a href="https://dl.acm.org/doi/pdf/10.1145/3630050.3630176" target="_blank" >https://dl.acm.org/doi/pdf/10.1145/3630050.3630176</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3630050.3630176" target="_blank" >10.1145/3630050.3630176</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    DataZoo: Streamlining Traffic Classification Experiments

  • Original language description

    The machine learning communities, such as those around computer vision or natural language processing, have developed numerous supportive tools and benchmark datasets to accelerate the development. In contrast, the network traffic classification field lacks standard benchmark datasets for most tasks, and the available supportive software is rather limited in scope. This paper aims to address the gap and introduces DataZoo, a toolset designed to streamline dataset management in network traffic classification. DataZoo provides a standardized API for accessing three extensive datasets--CESNET-QUIC22, CESNET-TLS22, and CESNET-TLS-YEAR22. Moreover, it includes methods for feature scaling and realistic dataset partitioning, taking into consideration temporal and service-related factors. The DataZoo toolset simplifies the creation of realistic evaluation scenarios, making it easier to cross-compare classification methods and reproduce results.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20202 - Communication engineering and systems

Result continuities

  • Project

    <a href="/en/project/VJ02010024" target="_blank" >VJ02010024: Flow-based Encrypted Traffic Analysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    SAFE &apos;23: Proceedings of the 2023 on Explainable and Safety Bounded, Fidelitous, Machine Learning for Networking

  • ISBN

    979-8-4007-0449-9

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    3-7

  • Publisher name

    ACM

  • Place of publication

    New York

  • Event location

    Paříž, Francie

  • Event date

    Dec 5, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article