Preparing the deployment of Quantum Key Distribution over a classical network infrastructure in Prague
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F23%3A10133615" target="_blank" >RIV/63839172:_____/23:10133615 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/23:00367143 RIV/68407700:21340/23:00367143
Result on the web
<a href="https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12570/2665653/Preparing-the-deployment-of-quantum-key-distribution-over-a-classical/10.1117/12.2665653.short" target="_blank" >https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12570/2665653/Preparing-the-deployment-of-quantum-key-distribution-over-a-classical/10.1117/12.2665653.short</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2665653" target="_blank" >10.1117/12.2665653</a>
Alternative languages
Result language
angličtina
Original language name
Preparing the deployment of Quantum Key Distribution over a classical network infrastructure in Prague
Original language description
Quantum Key Distribution (QKD) is a promising tool for secure communication in the near future. In combination with one-time-pad technique, it provides an unconditionally secure communication channel (meaning that it is secure against an adversary, even with unlimited computational power), at least in principle. However, a major implementation challenge for some schemes is the reliable creation, transportation, and measurement of entangled photon pairs over long-distance fiber networks. Our project aims to explore the possibilities for distributing quantum information on an existing network infrastructure while measuring the effects of real-world conditions. We characterized a commercial source of entangled photons. We measured its spectrum, brightness (1.6+-0.3)x104 pairs/s/µW, and performed quantum state tomography (QST) to reconstruct the density matrix of the quantum state. Our implementation focuses on an all-fiber solution, which would enable a simplified QKD implementation. In laboratory conditions, we achieved the visibility equal to (0.957 +- 0.004) as a mean in both bases with a coincidence rate of (275 +- 4) counts/s and successfully ran QKD protocol with secret key rate of (86 +- 1) bits/s and average quantum bit error rate (QBER) of (4.8 +- 0.7) %
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20202 - Communication engineering and systems
Result continuities
Project
<a href="/en/project/LM2023054" target="_blank" >LM2023054: e-Infrastructure CZ</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Quantum Optics and Photon Counting 2023
ISBN
978-1-5106-6260-5
ISSN
0277-786X
e-ISSN
—
Number of pages
6
Pages from-to
—
Publisher name
SPIE
Place of publication
Bellingham, Washington USA
Event location
Praha
Event date
Apr 24, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001023007300004