All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fusing Heterogeneous Data for Network Asset Classification - A Two-layer Approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F24%3A10133657" target="_blank" >RIV/63839172:_____/24:10133657 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/NOMS59830.2024.10575154" target="_blank" >http://dx.doi.org/10.1109/NOMS59830.2024.10575154</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/NOMS59830.2024.10575154" target="_blank" >10.1109/NOMS59830.2024.10575154</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fusing Heterogeneous Data for Network Asset Classification - A Two-layer Approach

  • Original language description

    An essential aspect of cybersecurity management is maintaining knowledge of the assets in the protected network. Automated asset discovery and classification can be done using various methods, differing in reliability and the provided type of information. Therefore, deploying multiple methods and combining their results is usually needed - but this is a nontrivial task. In this paper, we describe our case of how we got to the need for such a data fusion method, how we approached it, and we present our solution - a two-layer data fusion method that can effectively fuse multiple heterogeneous and unreliable sources of information about a network device to classify it. The method is based on a combination of expert-written conditions, machine learning from small amounts of data, and the Dempster-Shafer theory of evidence. We evaluate the method on the task of operating system recognition using data from real network traffic and several generated datasets simulating different conditions.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LM2023054" target="_blank" >LM2023054: e-Infrastructure CZ</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NOMS 2024-2024 IEEE Network Operations and Management Symposium

  • ISBN

    979-8-3503-2793-9

  • ISSN

    2374-9709

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1-6

  • Publisher name

    IEEE

  • Place of publication

    Seoul, South Korea

  • Event location

    Seoul, South Korea

  • Event date

    May 6, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001270140300051