MFWDD: Model-based Feature Weight Drift Detection Showcased on TLS and QUIC Traffic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F24%3A10133698" target="_blank" >RIV/63839172:_____/24:10133698 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/24:00377361
Result on the web
<a href="https://ieeexplore.ieee.org/abstract/document/10814630" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10814630</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/CNSM62983.2024.10814630" target="_blank" >10.23919/CNSM62983.2024.10814630</a>
Alternative languages
Result language
angličtina
Original language name
MFWDD: Model-based Feature Weight Drift Detection Showcased on TLS and QUIC Traffic
Original language description
Machine learning (ML) represents an efficient and popular approach for network traffic classification. However, network traffic inspection is a challenging domain and trained models may degrade soon after deployment. Besides biases present during data captures and model creation, data drifts contribute significantly to ML model degradation. This paper proposes a novel method called Model-based Feature Weight Drift Detection (MFWDD) for concept drift detection. It is a part of a public software framework suited for dataset drift analysis tailored to the domain of network traffic. This work addresses TLS and QUIC service classification problems, examines a variety of experiments analyzing the evolution of the respective distributions, and observes their degradation over time on different ML features. The MFWDD framework guided TLS and QUIC services classification models retraining throughout an extensive period and not only prevented model degradation but also improved its performance and consistency over time.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/VJ02010024" target="_blank" >VJ02010024: Flow-based Encrypted Traffic Analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2024 20th International Conference on Network and Service Management (CNSM)
ISBN
978-3-903176-66-9
ISSN
2165-963X
e-ISSN
—
Number of pages
5
Pages from-to
—
Publisher name
IEEE
Place of publication
New York
Event location
Praha
Event date
Oct 28, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001414325200095