All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Random Subspace Ensemble Artificial Neural Networks for First-episode Schizophrenia Classification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F65269705%3A_____%2F16%3A00065861" target="_blank" >RIV/65269705:_____/16:00065861 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14110/16:00091907

  • Result on the web

    <a href="http://dx.doi.org/10.15439/2016F333" target="_blank" >http://dx.doi.org/10.15439/2016F333</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.15439/2016F333" target="_blank" >10.15439/2016F333</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Random Subspace Ensemble Artificial Neural Networks for First-episode Schizophrenia Classification

  • Original language description

    Computer-aided schizophrenia diagnosis is a difficult task that has been developing for last decades. Since traditional classifiers have not reached sufficient sensitivity and specificity, another possible way is combining the classifiers in ensembles. In this paper, we take advantage of random subspace ensemble method and combine it with multilayer perceptron (MLP) and support vector machines (SVM). Our experiment employs voxel-based morphometry to extract the grey matter densities from 52 images of first-episode schizophrenia patients and 52 healthy controls. MLP and SVM are adapted on random feature vectors taken from predefined feature pool and the classification results are based on their voting. Random feature ensemble method improved prediction of schizophrenia when short input feature vector (100 features) was used, however the performance was comparable with single classifiers based on bigger input feature vector (1000 and 10000 features).

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FEDCSIS)

  • ISBN

    978-83-60810-90-3

  • ISSN

    2300-5963

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    317-321

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Gdansk, Poland

  • Event date

    Sep 11, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000392436600050