Genes Involved in the Processes of Cell Proliferation, Migration, Adhesion, and Tissue Development as New Potential Markers of Porcine Granulosa Cellular Processes In Vitro: A Microarray Approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F65269705%3A_____%2F19%3A00070999" target="_blank" >RIV/65269705:_____/19:00070999 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14110/19:00112992
Result on the web
<a href="https://www.liebertpub.com/doi/10.1089/dna.2018.4467" target="_blank" >https://www.liebertpub.com/doi/10.1089/dna.2018.4467</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1089/dna.2018.4467" target="_blank" >10.1089/dna.2018.4467</a>
Alternative languages
Result language
angličtina
Original language name
Genes Involved in the Processes of Cell Proliferation, Migration, Adhesion, and Tissue Development as New Potential Markers of Porcine Granulosa Cellular Processes In Vitro: A Microarray Approach
Original language description
Proper course of folliculogenesis and oogenesis have an enormous impact on female fertility. Both processes take place in the ovary and involve not only the maturing germ cell, but also few types of somatic cells that assist the ovarian processes and mediate the dialog with the oocyte. These cells, granulosa and theca, are heavily involved in essential reproductive processes, such as ovulation, fertilization, and embryo implantation. In this study, we have used the expressive microarray approach to analyze the transcriptome of porcine granulosa cells, during short-term in vitro culture. We have further selected differentially expressed gene ontologies, involved in cell proliferation, migration, adhesion, and tissue development, namely, "cell-cell adhesion," "cell motility," "cell proliferation," "tissue development," and "tissue migration" to screen them for the possibility of discovery of new markers of those processes. A total of 303 genes, expression of which varied significantly in different culture periods and belonged to the analyzed ontology groups, were detected, of which 15 that varied the most (between 0 and 48 h of culture) were selected for validation. As the validation confirmed the transcriptomic patterns, 10 genes of biggest changes in expression (CAV1, IGFBP5, ITGB3, FN1, ITGA2, LAMB1, POSTN, FAM83D, KIF14, and CDK1) were analyzed, described, and referred to the context of the study, with the most promising new markers and further proof for the viability of the currently recognized ones detailed. Overall, the study provided valuable insight into the molecular functioning of in vitro granulosa cell cultures.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DNA and Cell Biology
ISSN
1044-5498
e-ISSN
—
Volume of the periodical
38
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
549-560
UT code for WoS article
000473437200006
EID of the result in the Scopus database
2-s2.0-85067193329