All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

New Multilocus Sequence Typing Scheme for Enterococcus faecium Based on Whole Genome Sequencing Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F65269705%3A_____%2F23%3A00078101" target="_blank" >RIV/65269705:_____/23:00078101 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14110/23:00131100 RIV/00216305:26220/23:PU148272

  • Result on the web

    <a href="https://journals.asm.org/doi/epub/10.1128/spectrum.05107-22" target="_blank" >https://journals.asm.org/doi/epub/10.1128/spectrum.05107-22</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1128/spectrum.05107-22" target="_blank" >10.1128/spectrum.05107-22</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    New Multilocus Sequence Typing Scheme for Enterococcus faecium Based on Whole Genome Sequencing Data

  • Original language description

    Enterococcus faecium is one of the most important pathogens causing health care associated infections. One of the main reasons for its clinical importance is a rapidly spreading resistance to vancomycin and linezolid, which significantly complicates antibiotic treatment of infections caused by such resistant strains. The MLST scheme currently used for Enterococcus faecium typing was designed in 2002 and is based on putative gene functions and Enterococcus faecalis gene sequences available at that time. As a result, the original MLST scheme does not correspond to the real genetic relatedness of E. faecium strains and often clusters genetically distant strains to the same sequence types (ST). Nevertheless, typing has a significant impact on the subsequent epidemiological conclusions and introduction of appropriate epidemiological measures, thus it is crucial to use a more accurate MLST scheme. Based on the genome analysis of 1,843 E. faecium isolates, a new scheme, consisting of 8 highly discriminative loci, was created in this study. These strains were divided into 421 STs using the new MLST scheme, as opposed to 223 STs assigned by the original MLST scheme. The proposed MLST has a discriminatory power of D = 0.983 (CI95% 0.981 to 0.984), compared to the original scheme&apos;s D = 0.919 (CI95% 0.911 to 0.927). Moreover, we identified new clonal complexes with our newly designed MLST scheme. The scheme proposed here is available within the PubMLST database. Although whole genome sequencing availability has increased rapidly, MLST remains an integral part of clinical epidemiology, mainly due to its high standardization and excellent robustness. In this study, we proposed and validated a new MLST scheme for E. faecium, which is based on genome-wide data and thus reflects the tested isolates&apos; more accurate genetic similarity.IMPORTANCE Enterococcus faecium is one of the most important pathogens causing health care associated infections. One of the main reasons for its clinical importance is a rapidly spreading resistance to vancomycin and linezolid, which significantly complicates antibiotic treatment of infections caused by such resistant strains. Monitoring the spread and relationships between resistant strains causing severe conditions represents an important tool for implementing appropriate preventive measures. Therefore, there is an urgent need to establish a robust method enabling strain monitoring and comparison at the local, national, and global level. Unfortunately, the current, extensively used MLST scheme does not reflect the real genetic relatedness between individual strains and thus does not provide sufficient discriminatory power. This can lead directly to incorrect epidemiological measures due to insufficient accuracy and biased results.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10606 - Microbiology

Result continuities

  • Project

    <a href="/en/project/NV19-09-00430" target="_blank" >NV19-09-00430: Whole-Genome Sequencing for Hospital Epidemiology and Multi-drug Resistant Bacteria Outbreaks Detection</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Microbiology Spectrum

  • ISSN

    2165-0497

  • e-ISSN

    2165-0497

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    "AUG 17"

  • UT code for WoS article

    001004310600001

  • EID of the result in the Scopus database

    2-s2.0-85168255567