Elementary Green function as an integral superposition of Gaussian beams in inhomogeneous anisotropic layered structures in Cartesian coordinates
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F17%3A00475687" target="_blank" >RIV/67985530:_____/17:00475687 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/17:10367431
Result on the web
<a href="http://dx.doi.org/10.1093/gji/ggx183" target="_blank" >http://dx.doi.org/10.1093/gji/ggx183</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/gji/ggx183" target="_blank" >10.1093/gji/ggx183</a>
Alternative languages
Result language
angličtina
Original language name
Elementary Green function as an integral superposition of Gaussian beams in inhomogeneous anisotropic layered structures in Cartesian coordinates
Original language description
Integral superposition of Gaussian beams is a useful generalization of the standard ray theory. It removes some of the deficiencies of the ray theory like its failure to describe properly behaviour of waves in caustic regions. It also leads to a more efficient computation of seismic wavefields since it does not require the time-consuming two-point ray tracing. We present the formula for a high-frequency elementary Green function expressed in terms of the integral superposition of Gaussian beams for inhomogeneous, isotropic or anisotropic, layered structures, based on the dynamic ray tracing (DRT) in Cartesian coordinates. For the evaluation of the superposition formula, it is sufficient to solve the DRT in Cartesian coordinates just for the point-source initial conditions. Moreover, instead of seeking 3 x 3 paraxial matrices in Cartesian coordinates, it is sufficient to seek just 3 x 2 parts of these matrices. The presented formulae can be used for the computation of the elementary Green function corresponding to an arbitrary direct, multiply reflected/transmitted, unconverted or converted, independently propagating elementary wave of any of the three modes, P, S1 and S2. Receivers distributed along or in a vicinity of a target surface may be situated at an arbitrary part of the medium, including ray-theory shadow regions. The elementary Green function formula can be used as a basis for the computation of wavefields generated by various types of point sources (explosive, moment tensor).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10507 - Volcanology
Result continuities
Project
<a href="/en/project/GA16-05237S" target="_blank" >GA16-05237S: Seismic waves in inhomogeneous weakly anisotropic media</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Geophysical Journal International
ISSN
0956-540X
e-ISSN
—
Volume of the periodical
210
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
9
Pages from-to
561-569
UT code for WoS article
000409283300001
EID of the result in the Scopus database
2-s2.0-85037109401