All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Probing the northern Chile megathrust with seismicity: The 2014 M8.1 Iquique earthquake sequence

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F19%3A00522087" target="_blank" >RIV/67985530:_____/19:00522087 - isvavai.cz</a>

  • Result on the web

    <a href="https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JB017794" target="_blank" >https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JB017794</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1029/2019JB017794" target="_blank" >10.1029/2019JB017794</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Probing the northern Chile megathrust with seismicity: The 2014 M8.1 Iquique earthquake sequence

  • Original language description

    We used data from >100 permanent and temporary seismic stations to investigate seismicity patterns related to the 1 April 2014 M8.1 Iquique earthquake in northern Chile. Applying a multistage automatic event location procedure to the seismic data, we detected and located 19,000 foreshocks, aftershocks, and background seismicity for 1 month preceding and 9 months following the mainshock. Foreshocks skirt around the updip limit of the mainshock asperity, aftershocks occur mainly in two belts updip and downdip of it. The updip seismicity primarily locates in a zone of transitional friction on the megathrust and can be explained by preseismic stress loading due to slow-slip processes and afterslip driven by increased Coulomb failure stress due to the mainshock and its largest aftershock. Afterslip further south also triggered aftershocks and repeating earthquakes in several EW striking streaks. We interpret the streaks as markers of surrounding creep that could indicate a change in fault mechanics and may have structural origin, caused by fluid-induced failure along presumed megathrust corrugations. Megathrust aftershocks terminate updip below the seaward frontal prism in the outer continental wedge that probably behaves aseismically under velocity-strengthening conditions. The inner wedge locates further landward overlying the megathrust's seismogenic zone. Further downdip, aftershocks anticorrelate with the two major afterslip patches resolved geodetically and partially correlate with increased Coulomb failure stress, overall indicating heterogeneous frictional behavior. A region of sparse seismicity at 40- to 50-km depth is followed by the deepest plate interface aftershocks at 55- to 65-km depth, which occur in two clusters of significantly different dip.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10507 - Volcanology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Geophysical Research: Solid Earth

  • ISSN

    2169-9313

  • e-ISSN

  • Volume of the periodical

    124

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

    12935-12954

  • UT code for WoS article

    000500672800001

  • EID of the result in the Scopus database

    2-s2.0-85076136558