P-wave reflection-moveout approximation for horizontally layered media of arbitrary moderate anisotropy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F20%3A00523729" target="_blank" >RIV/67985530:_____/20:00523729 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/20:10421793
Result on the web
<a href="https://library.seg.org/doi/full/10.1190/geo2019-0232.1" target="_blank" >https://library.seg.org/doi/full/10.1190/geo2019-0232.1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1190/GEO2019-0232.1" target="_blank" >10.1190/GEO2019-0232.1</a>
Alternative languages
Result language
angličtina
Original language name
P-wave reflection-moveout approximation for horizontally layered media of arbitrary moderate anisotropy
Original language description
We present an approximate nonhyperbolic P-wave moveout formula applicable to horizontally layered media of moderate or weak anisotropy of arbitrary symmetry and orientation. Anisotropy symmetry and its orientation may differ from layer to layer. Instead of commonly used Taylor-series expansion of the square of the reflection traveltime in terms of the square of the offset, we use the weak-anisotropy approximation, in which the square of the reflection traveltime is expanded in terms of weak-anisotropy (WA) parameters. The resulting formula is simple, and it provides a transparent relation between the traveltimes and WA parameters. Along an arbitrarily chosen single surface profile, it depends, in each layer, on the thickness of the layer, on the reference P-wave velocity used for the construction of reference rays, and on three WA parameters specified in the Cartesian coordinate system related to the profile. In each layer, these three “profile” WA parameters depend on “local” WA parameters specifying anisotropy of a given layer in a local coordinate system and on directional cosines specifying the orientation of the local coordinate system with respect to the profile one. The number of local P-wave WA parameters may vary from three for transverse isotropy or six for orthorhombic symmetry to nine for triclinic symmetry. Our tests of the accuracy indicate that the maximum relative traveltime errors do not exceed 0.5% or 2.5% for weak or moderate P-wave anisotropy, respectively.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10507 - Volcanology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Geophysics
ISSN
0016-8033
e-ISSN
—
Volume of the periodical
85
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
"C61"-"C70"
UT code for WoS article
000519538200029
EID of the result in the Scopus database
—