All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Experimental evidence for lava-like mud flows under Martian surface conditions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F20%3A00524485" target="_blank" >RIV/67985530:_____/20:00524485 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/articles/s41561-020-0577-2" target="_blank" >https://www.nature.com/articles/s41561-020-0577-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41561-020-0577-2" target="_blank" >10.1038/s41561-020-0577-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Experimental evidence for lava-like mud flows under Martian surface conditions

  • Original language description

    Large outflow channels on ancient terrains of Mars have been interpreted as the products of catastrophic flood events. The rapid burial of water-rich sediments after such flooding could have led to sedimentary volcanism, in which mixtures of sediment and water (mud) erupt to the surface. Tens of thousands of volcano-like landforms populate the northern lowlands and other local sedimentary depocentres on Mars. However, it is difficult to determine whether the edifices are related to igneous or mud extrusions, partly because the behaviour of extruded mud under Martian surface conditions is poorly constrained. Here we investigate the mechanisms of mud propagation on Mars using experiments performed inside a low-pressure chamber at cold temperatures. We found that low viscosity mud under Martian conditions propagates differently from that on Earth, because of a rapid freezing and the formation of an icy crust. Instead, the experimental mud flows propagate like terrestrial pahoehoe lava flows, with liquid mud spilling from ruptures in the frozen crust, and then refreezing to form a new flow lobe. We suggest that mud volcanism can explain the formation of some lava-like flow morphologies on Mars, and that similar processes may apply to cryovolcanic extrusions on icy bodies in the Solar System.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10507 - Volcanology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nature Geoscience

  • ISSN

    1752-0894

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    5

  • Pages from-to

    403-407

  • UT code for WoS article

    000533834500003

  • EID of the result in the Scopus database

    2-s2.0-85085193680