Microgravity method in archaeological prospection: methodical comments on selected case studies from crypt and tomb detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F20%3A00525626" target="_blank" >RIV/67985530:_____/20:00525626 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/10.1002/arp.1787" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/arp.1787</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/arp.1787" target="_blank" >10.1002/arp.1787</a>
Alternative languages
Result language
angličtina
Original language name
Microgravity method in archaeological prospection: methodical comments on selected case studies from crypt and tomb detection
Original language description
Detailed and precise measurement of the Earth's gravity field (microgravity method) can be effectively used for the detection and quantification of subsurface voids and/or cavities. There exist a variety of successful applications of the microgravity method in near surface geophysics, namely in geotechnical, environmental and archaeological prospection. Using state-of-the-art 'microgal' relative gravity meters, cavities of several metres in each dimension (positioned at a similar depth) can be detected and interpreted. Such objects produce negative anomalies with amplitudes of several tens of microGals (1 microGal = 10(-8)m s(-2)). This contribution is focused on a methodological overview of the most important acquisition and processing steps in archaeological microgravimetry. In the processing of acquired gravimetrical data into a Bouguer anomaly, the so-called building correction plays an important role, because the gravitational effect of building masses can produce false, usually negative anomalies. Several selected methods for quantitative interpretation are presented, these are based on depth estimation and density modelling. These interpretation methods give satisfactory results in the case of these type of negative anomalies that are caused by subsurface cavities. Microgravimetry can obtain good support from electromagnetic and electrical methods, mainly from ground penetrating radar and electrical resistivity tomography, respectively. Finally, we present successful case-studies of microgravimetrical detection of crypts in various churches from the Middle Ages and period of Modern History, surveyed during recent decades in Slovakia and Czechia.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10507 - Volcanology
Result continuities
Project
<a href="/en/project/LTC19029" target="_blank" >LTC19029: Application of Geophysical Approach in Archaeological Research and Prospection</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archaeological Prospection
ISSN
1075-2196
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
17
Pages from-to
415-431
UT code for WoS article
000548224000001
EID of the result in the Scopus database
2-s2.0-85087801520