All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Trans-Atlantic correlation of Late Cretaceous high-frequency sea-level cycles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F22%3A00556289" target="_blank" >RIV/67985530:_____/22:00556289 - isvavai.cz</a>

  • Alternative codes found

    RIV/00025798:_____/22:00000049 RIV/00216208:11310/22:10440995

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0012821X21005793" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0012821X21005793</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.epsl.2021.117323" target="_blank" >10.1016/j.epsl.2021.117323</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Trans-Atlantic correlation of Late Cretaceous high-frequency sea-level cycles

  • Original language description

    Previous studies of Cretaceous sedimentary rocks have used multi-proxy correlation methods to suggest eustatic change, modulated by the c. 400 kyr long eccentricity rhythm. Although numerous authors have inferred eustatic changes on shorter timescales, none have demonstrated synchronous sea-level changes in separate basins on different plates, thousands of kilometres apart. Our study integrates basin-scale, three-dimensional sequence architecture, molluscan biostratigraphy, and carbon-isotope chemostratigraphy to demonstrate synchronous sea-level changes in upper Turonian to lower Coniacian shallow-marine clastic successions in the Western Canada Foreland Basin, and the Bohemian Cretaceous Basin. Depositional sequences in both basins are plotted in a common time domain using an astronomically calibrated age model, allowing direct comparison. In both basins, at least seven major transgressive events can be shown to be synchronous within the limits of combined biostratigraphic and chemostratigraphic resolution. 'Major' and 'minor' sequences of late Turonian age appear to have been paced, respectively, by the long (c. 400 kyr) and short (c. 100 kyr) eccentricity cycles. In contrast, early Coniacian sequences evidence pacing by the c. 38 kyr obliquity rhythm. Stratal architecture suggests that sequences developed in response to eustatic changes of c. 14-20 m at average rates ranging 0.08 to >1.3 m/kyr. At a time of 'warm greenhouse' climate, sea-level change of this magnitude and timescale may not be explicable entirely as a result of thermal- and aquifer-eustasy, and hence glacio-eustasy may also have been a contributing factor.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10505 - Geology

Result continuities

  • Project

    <a href="/en/project/GA17-10982S" target="_blank" >GA17-10982S: Sea-level change and global carbon cycle in greenhouse climate: trans-Atlantic correlation of Turonian (mid-Cretaceous) sedimentary archives</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Earth and Planetary Science Letters

  • ISSN

    0012-821X

  • e-ISSN

    1385-013X

  • Volume of the periodical

    578

  • Issue of the periodical within the volume

    January

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    117323

  • UT code for WoS article

    000837878700008

  • EID of the result in the Scopus database

    2-s2.0-85120644617