All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Field and synthetic waveform tests on using large-offset seismic streamer data to derive shallow seabed shear-wave velocity and geotechnical properties

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F22%3A00558829" target="_blank" >RIV/67985530:_____/22:00558829 - isvavai.cz</a>

  • Result on the web

    <a href="https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021EA002196" target="_blank" >https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021EA002196</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1029/2021EA002196" target="_blank" >10.1029/2021EA002196</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Field and synthetic waveform tests on using large-offset seismic streamer data to derive shallow seabed shear-wave velocity and geotechnical properties

  • Original language description

    Characterizing properties of marine subsurface sediment helps with siting for offshore infrastructure. Shear-wave velocity (V-s) provides information on the geotechnical properties of the seabed. We present our initial efforts to obtain a detailed two-dimensional model of V-s for a large-offset multi-channel seismic (MCS) transect collected in shallow waters across the Taiwan Strait using surface waves excited by a large volume airgun. We derived the dispersion curves of the Scholte waves along the 37.5-km-long transect using the phase-shift method and then conducted multimodal inversion to obtain a V-s model down to a depth of 150 m. To estimate the dynamic Poisson's ratio across the transect, we combined the V-s model with a compressional wave velocity model derived from the traditional MCS semblance velocity analysis. Lastly, we approximated the seismic attenuation of the profile. Our results show a large lateral variation in shear-wave velocity. In the north, a low-velocity zone with shear-wave velocities of about 150 m/s was identified, while in the south, the shear-wave velocity was found to be 300 m/s. With synthetic data, several sensitivity tests were performed to derive optimal parameters for offshore large-offset streamer data. We particularly focused on the depth of the streamer and source and the water depth in combination with different seabed properties. Our results show that we can robustly derive the shear-wave velocity, along with the Poisson's ratio, using large-offset streamer data elsewhere based on the criteria we have tested using field and synthetic data sets.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10507 - Volcanology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Earth and Space Science

  • ISSN

    2333-5084

  • e-ISSN

    2333-5084

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    e2021EA002196

  • UT code for WoS article

    000815218700001

  • EID of the result in the Scopus database

    2-s2.0-85133099878