All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Global constraints on intermediate-depth intraslab stresses from slab geometries and mechanisms of double seismic zone earthquakes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F22%3A00560474" target="_blank" >RIV/67985530:_____/22:00560474 - isvavai.cz</a>

  • Result on the web

    <a href="https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022GC010498?af=R" target="_blank" >https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022GC010498?af=R</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1029/2022GC010498" target="_blank" >10.1029/2022GC010498</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Global constraints on intermediate-depth intraslab stresses from slab geometries and mechanisms of double seismic zone earthquakes

  • Original language description

    Double seismic zones (DSZs), parallel planes of intermediate-depth earthquakes inside oceanic slabs, have been observed in a number of subduction zones and may be a ubiquitous feature of downgoing oceanic plates. Focal mechanism observations from DSZ earthquakes sample the intraslab stress field at two distinct depth levels within the downgoing lithosphere. A pattern of downdip compressive over downdip extensive events was early on interpreted to indicate an unbending-dominated intraslab stress field. In the present study, we show that the intraslab stress field in the depth range of DSZs is much more variable than previously thought. Compiling DSZ locations and mechanisms from literature, we observe that the “classical” pattern of compressive over extensive events is only observed at about half of the DSZ locations around the globe. The occurrence of extensional mechanisms across both planes accounts for most other regions. To obtain an independent estimate of the bending state of slabs at intermediate depths, we compute (un)bending estimates from slab geometries taken from the slab2 compilation of slab surface depths. We find no clear global prevalence of slab unbending at intermediate depths, and the occurrence of DSZ seismicity does not appear to be limited to regions of slab (un)bending. Focal mechanism observations are frequently inconsistent with (un)bending estimates from slab geometries, which may imply that bending stresses are not always prevalent, and that other stress types such as in-plane tension due to slab pull or shallow compression due to friction along the plate interface may also play an important role.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10507 - Volcanology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Geochemistry, Geophysics, Geosystems

  • ISSN

    1525-2027

  • e-ISSN

    1525-2027

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    28

  • Pages from-to

    e2022GC010498

  • UT code for WoS article

    000853400200001

  • EID of the result in the Scopus database

    2-s2.0-85139155226