High precision U-Pb geochronology of Cenozoic phonolite volcanic bodies in Cenozoic Eger rift basin (Bohemian Massif)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985530%3A_____%2F24%3A00617393" target="_blank" >RIV/67985530:_____/24:00617393 - isvavai.cz</a>
Result on the web
<a href="https://meetingorganizer.copernicus.org/EGU24/EGU24-14830.html" target="_blank" >https://meetingorganizer.copernicus.org/EGU24/EGU24-14830.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
High precision U-Pb geochronology of Cenozoic phonolite volcanic bodies in Cenozoic Eger rift basin (Bohemian Massif)
Original language description
A new set of high-precision U-Pb data was acquired for two groups of phonolite bodies emplaced in the volcano-sedimentary sequence of the Cenozoic Eger Rift in Bohemian Massif. The phonolites are located in the western (5 bodies) and eastern (3 bodies) edge of this monogenetic volcanic field, stretched along the central part of the Eger Rift system. The selected phonolite bodies represent lava flows, cryptodomes or extrusive domes emplaced in phreatomagmatic maar-diatremes, remnants of dykes, and a laccolith. The U-Pb dates were acquired using the Laser Ablation Split Stream system at Santa Barbara University geochronology lab, which provides the coupled geochronology and also REE and selected major element geochemistry. Despite the great variety of internal zircon textures from oscillatory zoning to complex patchy patterns with a large range of cathodoluminescence intensity, the groups of spots gained coherent and surprisingly precise ages for each sample. The western group of phonolite bodies, namely the Bořeň, Želenický vrch, Špičák, Hněvín, and Ryzelský vrch display clusters of ages ranging between 33Ma and 36Ma, while zircons of the eastern group of the phonolites, Krompach, Mariánská hora and Luž (Lausche) indicate ages between 30Ma and 32Ma. Terra-Wasserburg diagrams for individual samples revealed remarkable precision marked by errors of only 90-180 thousand years (5 samples) and 300-650 thousand years (2 samples). The U-Pb zircon ages are interpreted to reflect primarily the high-temperature overprint of inherited (and possibly newly crystallized) zircons before emplacement of the phonolite bodies in the upper crust. In addition, titanite grains measured alongside the zircon grains (in another run) either overlap (Bořeň) with the zircon age error on Terra-Wasserburg diagrams (geochrone) or are 2 Ma years younger than corresponding zircon ages (Špičák phonolite body). REE binary diagrams revealed separate clusters of Sm/Nd and also Hf content of the zircons, which can be attributed to different degrees of partial melting of parental magma in the source upper mantle or the lower crust for both groups of sampled phonolites. In summary, the results suggest that U-Pb geochronology using the LASS system is a powerful tool with a great potential for deciphering the evolution of phonolites in the Cenozoic Rift system in Bohemian Massif and possibly other rift systems in the foreland of the Alpine orogeny.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10505 - Geology
Result continuities
Project
<a href="/en/project/GA22-13980S" target="_blank" >GA22-13980S: Geodynamic controls on continental rifting in Cenozoic central Europe: insights from the Eger Rift, Bohemia</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů