Bayesian M-T clustering for reduced parameterisation of Markov chains used for non-linear adaptive elements.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F01%3A16010056" target="_blank" >RIV/67985556:_____/01:16010056 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Bayesian M-T clustering for reduced parameterisation of Markov chains used for non-linear adaptive elements.
Original language description
Markov chains are black box models ideal for describing stochastic digitised systems. Although the identification of their parameters can be a relatively easy task to perform, the dimensionality involved become undesirable large. This significant drawback can be overcome by exploiting smoothness of the underlying system. The paper present a novel hybrid off-line algorithm to locate areas which merit detailed model description. It comprises Bayesian parameter estimation and Mean tracking algorithm.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA102%2F99%2F1564" target="_blank" >GA102/99/1564: Research and education centre in adaptive systems - A pilot project</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Automatica
ISSN
0005-1098
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
1071-1078
UT code for WoS article
—
EID of the result in the Scopus database
—