All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Conditional independences in Gaussian vectors and polynomials.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F02%3A16020098" target="_blank" >RIV/67985556:_____/02:16020098 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Conditional independences in Gaussian vectors and polynomials.

  • Original language description

    Relations between the inference among conditional independences in nondegenerate Gaussian vectors and computational techniques of commutative algebra are studied. A general method for proving implications involving the conditional independences is presented. Examples of the implications are discussed as consequences of the method that amounts to computation of a Groebner basis.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2002

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Workshop on Conditionals, Information, and Inference.

  • ISBN

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    169-176

  • Publisher name

    Fernuniversitaet Hagen

  • Place of publication

    Hagen

  • Event location

    Hagen [DE]

  • Event date

    May 13, 2002

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article