Strictly modular probabilistic neural networks for pattern recognition.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F03%3A16030252" target="_blank" >RIV/67985556:_____/03:16030252 - isvavai.cz</a>
Alternative codes found
RIV/61384399:31160/03:00018232
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Strictly modular probabilistic neural networks for pattern recognition.
Original language description
Considering the statistical pattern recognition we approximate the unknown class-conditional probability distributions by multivariate Bernoulli mixtures. We show that both the parameter optimization based on EM algorithm and the resulting Bayesian decision-making can be realized by a strictly modular probabilistic neural network. The autonomous adaptation of neurons includes only the locally available information. The properties of the sequential learning procedure are illustrated by numerical examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
6
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
17
Pages from-to
599-615
UT code for WoS article
—
EID of the result in the Scopus database
—