Linear non-additive set-functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F04%3A00106260" target="_blank" >RIV/67985556:_____/04:00106260 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Linear non-additive set-functions
Original language description
It is known that for basis linear fuzzy measures the Aumann and the Choquet integrals defined on a special class of fuzzy subsets of some Banach space commute. We characterize basis linear fuzzy measure by means of appropriate linear functionals, and consequently the relevant integral representation (by means of the Lebesgue integral) is introduced. As a corollary the well-known additivity of perimeters of convex subsets in the real plane is obtained.
Czech name
Lineárne neaditívne množinové funkcie
Czech description
Je známe, že pre bázové lineárne fuzzy miery komutujú Aumannov a Choquetov integrál, ktoré sú definované na špeciálnej triede fuzzy podmnožín nejakého Banachovho priestoru. V práci charakterizujeme bázové lineárne fuzzy miery pomocou vhodných lineárnychfunkcionálov, a následne zavádzame príslušnú integrálnu reprezentáciu pomocou Lebesgueovho integrálu. Ako dôsledok dostávame známu aditivitu obvodov konvexnych podmnožín v reálnej rovine
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA402%2F04%2F1026" target="_blank" >GA402/04/1026: Aggregation principles in economic-mathematical models</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of General Systems
ISSN
0308-1079
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
89-98
UT code for WoS article
—
EID of the result in the Scopus database
—