Optimization problems with equilibrium constraints and their numerical solution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F04%3A00106331" target="_blank" >RIV/67985556:_____/04:00106331 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Optimization problems with equilibrium constraints and their numerical solution
Original language description
We consider a class of optimization problems with a generalized equation among the constraints. This class covers several problem types like MPEC (Mathematical Programs with Equilibrium Constraints) and MPCC (Mathematical Programs with Complementarity Constraints). We briefly review techniques used for numerical solution of these problems: penalty methods, nonlinear programming (NLP) techniques and Implicit Programming approach (ImP).
Czech name
Optimalizacni problemy s ekvilibrialnimi omezenimi a jejich numericke reseni
Czech description
Clanek pojednava o optimalizacnich problemech s omezenimi typu zobecnenych rovnic. Podava prehled numerickych technik pro reseni techto problemu: penalizacni metody, techniky nelinearniho programovani a implicitni programovani
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA1075005" target="_blank" >IAA1075005: Variational problems in nonsmooth mathematical physics: theory, numerical methods and applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Programming
ISSN
0025-5610
e-ISSN
—
Volume of the periodical
101
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
31
Pages from-to
119-149
UT code for WoS article
—
EID of the result in the Scopus database
—