Many-dimensional observables on Lukasiewicz tribe: Constructions, conditioning and conditional independence
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F05%3A00411514" target="_blank" >RIV/67985556:_____/05:00411514 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Many-dimensional observables on Lukasiewicz tribe: Constructions, conditioning and conditional independence
Original language description
Probability on collections of fuzzy sets can be developed as a generalization of the classical probability. A Lukasiewicz tribe is a collection of fuzzy sets which is closed under the standard fuzzy complementation and under the pointwise application ofthe Lukasiewicz t-norm to countably many fuzzy sets. Constructions of observables, independence and conditional independence is studied in the paper.
Czech name
Vicerozmerne pozorovatelne na Lukasiewiczove kmenu: Konstrukce, podminovani a podminena nezavislost
Czech description
Clanek se zabyva specifickymi konstrukcemi v ramci pravdepodobnosti na fuzzy mnozinach. Jedna se zejmena o pozorovatelne, ktere plni roli nahodnych velicin a jejich podminovani, ktere umoznuje zavest nezavislost a podminenou nezavislost.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F02%2F1540" target="_blank" >GA201/02/1540: Many-valued logics for soft computing</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Kybernetika
ISSN
0023-5954
e-ISSN
—
Volume of the periodical
41
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
18
Pages from-to
451-468
UT code for WoS article
—
EID of the result in the Scopus database
—