Conditional Mutual Information Based Feature Selection for Classification Task
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F07%3A00085611" target="_blank" >RIV/67985556:_____/07:00085611 - isvavai.cz</a>
Alternative codes found
RIV/61384399:31160/07:00028385
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Conditional Mutual Information Based Feature Selection for Classification Task
Original language description
We propose a sequential forward feature selection method to find a subset of features that are most relevant to the classification task. Our approach uses novel estimation of the conditional mutual information between candidate feature and classes, givena subset of already selected features which is utilized as a classifier independent criterion for evaluation of feature subsets. The proposed mMIFS-U algorithm is applied to text classification problem and compared with MIFS method and MIFS-U method proposed by Battiti and Kwak and Choi, respectively. Our feature selection algorithm outperforms MIFS method and MIFS-U in experiments on high dimensional Reuters textual data.
Czech name
Výběr příznaků pro klasifikaci založený na podmíněné vzájemné informaci
Czech description
Byl navržen mMIFS-U algoritmus pro výběr příznaků, založený na novém odhadu kriteria podmíněné vzájemné informace. Algoritmus byl aplikován na problém klasifikace textových dokumentů a porovnán s dříve navrženými algoritmy MIFS a MIFS-U. Účinnost navrženého kriteria byla porovnána při použití naivního Bayesova klasifikátoru pro multinomický model textového dokumentu, lineárního support vektor machine klasifikátoru a k-nejbližších sousedů na Reuters-21578 textových souborech s vysokou dimensionalitou. Klasifikační metody při použití příznaků vybraných pomocí navrženého algoritmu mMIFS-U vykazuje vyšší přesnost klasifikace oproti výše zmíněným algoritmům.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>R - Projekt Ramcoveho programu EK
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
45
Issue of the periodical within the volume
4756
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
417-426
UT code for WoS article
—
EID of the result in the Scopus database
—