Adhesivity of polymatroids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F07%3A00098117" target="_blank" >RIV/67985556:_____/07:00098117 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Adhesivity of polymatroids
Original language description
Two polymatroids are adhesive if a polymatroid extends both in such a way that two ground sets become a modular pair. Motivated by entropy functions, the class of polymatroids with adhesive restrictions and a class of selfadhesive polymatroids are introduced and studied. Adhesivity is described by polyhedral cones of rank functions and defining inequalities of the cones are identified, among them known and new non-Shannon type information inequalities for entropy functions. The selfadhesive polymatroidson a four-element set are characterized by Zhang-Yeung inequalities.
Czech name
Adhesivita polymatroidov
Czech description
Dva polymatroidy jsou adhesivní, když je nějaký polymtroid rozšiřuje tak, že nosiče jsou v něm modulárním párem. Byly zavedeny a studovány třídy polymatroidů s adhesivními restrikcemi a samoadhesivních polymatroidů. Adhesivita byla popsána pomocí polyhedrálních kuželů. Samoadhesivní polymatroidy na čtyřprvkové množině byly popsány pomocí Zhang-Yeungových nerovností.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100750603" target="_blank" >IAA100750603: Information geomerty of multidimensional models in statistics and artificial intelligence.</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
307
Issue of the periodical within the volume
21
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
2464-2477
UT code for WoS article
—
EID of the result in the Scopus database
—