All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Hybrid Technique for Blind Separation of Non-Gaussian and Time-Correlated Sources Using a Multicomponent Approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F08%3A00306563" target="_blank" >RIV/67985556:_____/08:00306563 - isvavai.cz</a>

  • Alternative codes found

    RIV/46747885:24220/08:#0000868

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Hybrid Technique for Blind Separation of Non-Gaussian and Time-Correlated Sources Using a Multicomponent Approach

  • Original language description

    Blind inversion of a linear and instantaneous mixture of source signals is a problem often encountered in many signal processing applications. Efficient FastICA (EFICA) offers an asymptotically optimal solution to this problem when all of the sources obey a generalized Gaussian distribution, at most one of them is Gaussian, and each is independent and identically distributed in time. Likewise, Weights-Adjusted Second Order Blind Identification (WASOBI) is asymptotically optimal when all the sources areGaussian and can be modeled as Autoregressive (AR) processes with distinct spectra. Nevertheless, real-life mixtures are likely to contain both Gaussian AR and non-Gaussian iid sources, rendering WASOBI and EFICA severely sub-optimal. In this paper we propose a novel scheme for combining the strengths of EFICA and WASOBI in order to deal with such hybrid mixtures. Simulations show that our approach outperforms competing algorithms designed for separating similar mixtures.

  • Czech name

    Hybridní technika slepé separace negaussovských a časově korelovaných zdrojů s využitím vícenásobných komponent

  • Czech description

    Slepá separace lineárních směsí nezávislých signálů je problémem který se vyskytuje v biomedcínslých aplikacích i ve zpracování akustických signálů. Algoritmus EFICA poskytuje asymptoticky optimální řešení tohoto problému, pokud všechny zdroje mají zobecněné Gaussovo rozložení, jsou nezávislé s tejně rozložené v čase. Algoritmus WASOBI je asymptoticky optimální, pokud se všechny zdroje dají popsat jako autoregresní náhodné procesy s Gaussovým rozložením. Signály objevující se v praxi mají zpravidla jakne-Gaussovské rozložení, tak netriviální časovou korelační strukturu. V článku navrhujeme algoritmus, který kombinuje silné stránky zmíněných algoritmů při separaci takových směsí. V simulacích jsou ukázány vynikající vlastnosti navrženého řešení v porovnání s dalšími existujícími algoritmy.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Neural Networks

  • ISSN

    1045-9227

  • e-ISSN

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    421-430

  • UT code for WoS article

  • EID of the result in the Scopus database