A Hybrid Technique for Blind Separation of Non-Gaussian and Time-Correlated Sources Using a Multicomponent Approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F08%3A00306563" target="_blank" >RIV/67985556:_____/08:00306563 - isvavai.cz</a>
Alternative codes found
RIV/46747885:24220/08:#0000868
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Hybrid Technique for Blind Separation of Non-Gaussian and Time-Correlated Sources Using a Multicomponent Approach
Original language description
Blind inversion of a linear and instantaneous mixture of source signals is a problem often encountered in many signal processing applications. Efficient FastICA (EFICA) offers an asymptotically optimal solution to this problem when all of the sources obey a generalized Gaussian distribution, at most one of them is Gaussian, and each is independent and identically distributed in time. Likewise, Weights-Adjusted Second Order Blind Identification (WASOBI) is asymptotically optimal when all the sources areGaussian and can be modeled as Autoregressive (AR) processes with distinct spectra. Nevertheless, real-life mixtures are likely to contain both Gaussian AR and non-Gaussian iid sources, rendering WASOBI and EFICA severely sub-optimal. In this paper we propose a novel scheme for combining the strengths of EFICA and WASOBI in order to deal with such hybrid mixtures. Simulations show that our approach outperforms competing algorithms designed for separating similar mixtures.
Czech name
Hybridní technika slepé separace negaussovských a časově korelovaných zdrojů s využitím vícenásobných komponent
Czech description
Slepá separace lineárních směsí nezávislých signálů je problémem který se vyskytuje v biomedcínslých aplikacích i ve zpracování akustických signálů. Algoritmus EFICA poskytuje asymptoticky optimální řešení tohoto problému, pokud všechny zdroje mají zobecněné Gaussovo rozložení, jsou nezávislé s tejně rozložené v čase. Algoritmus WASOBI je asymptoticky optimální, pokud se všechny zdroje dají popsat jako autoregresní náhodné procesy s Gaussovým rozložením. Signály objevující se v praxi mají zpravidla jakne-Gaussovské rozložení, tak netriviální časovou korelační strukturu. V článku navrhujeme algoritmus, který kombinuje silné stránky zmíněných algoritmů při separaci takových směsí. V simulacích jsou ukázány vynikající vlastnosti navrženého řešení v porovnání s dalšími existujícími algoritmy.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Neural Networks
ISSN
1045-9227
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
421-430
UT code for WoS article
—
EID of the result in the Scopus database
—