All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Iterative principles of recognition in probabilistic neural networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F08%3A00311199" target="_blank" >RIV/67985556:_____/08:00311199 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Iterative principles of recognition in probabilistic neural networks

  • Original language description

    When considering the probabilistic approach to neural networks in the framework of statistical pattern recognition we assume approximation of class-conditional probability distributions by finite mixtures of product components. The mixture components canbe interpreted as probabilistic neurons in neurophysiological terms and, in this respect, the fixed probabilistic description contradicts the well known short-term dynamic properties of biological neurons. By introducing iterative schemes of recognitionwe show that some parameters of probabilistic neural networks can be /released/ for the sake of dynamic processes without disturbing the statistically correct decision making. In particular, we can iteratively adapt the mixture component weights or modify the input pattern in order to facilitate correct recognition. Both procedures are shown to converge monotonically as a special case of the well known EM algorithm for estimating mixtures.

  • Czech name

    Iterativní principy rozpoznávání v pravděpodobnostních neuronových sítích

  • Czech description

    Pravděpodobnostní přístup patří k nejnovějším metodám návrhu neuronových sítí. Základní paradigma pravděpodobnostního přístupu je jiné než v případě standardních metod. Návrh ?klasické? neuronové sítě zpravidla vychází z formálního modelu neuronu a předpokládá nějaký způsob propojení neuronů v síti. Adaptace neuronové sítě pro daný účel (rozpoznávání vstupních objektů, aproximaci výstupní funkce a pod.) probíhá na základě nějakého algoritmu učení, který je navržen heuristicky, nebo je odvozen z vhodně zvoleného kriteria optimální funkce sítě.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neural Networks

  • ISSN

    0893-6080

  • e-ISSN

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

    000259846600006

  • EID of the result in the Scopus database