All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Unsupervised Texture Segmentation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F08%3A00317725" target="_blank" >RIV/67985556:_____/08:00317725 - isvavai.cz</a>

  • Alternative codes found

    RIV/61384399:31160/08:00030694

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Unsupervised Texture Segmentation

  • Original language description

    Segmentation is the fundamental process which partitions a data space into meaningful salient regions. Image segmentation essentially affects the overall performance of any automated image analysis system thus its quality is of the utmost importance. Image regions, homogeneous with respect to some usually textural or colour measure, which result from a segmentation algorithm are analysed in subsequent interpretation steps. Several new unsupervised multispectral texture segmentation methods based on underlying Markovian spatial models with unknown number of classes are presented in the chapter. The performances of the presented methods are extensively tested on the Prague segmentation benchmark using the commonest segmentation criteria and compares favourably with several alternative texture segmentation methods.

  • Czech name

    Neřízená segmentace textur

  • Czech description

    Segmentace je základní proces, který rozděluje datový prostor na smysluplné charakteristické podprostory. Segmentace obrazu zásadně ovlivňuje celkovou spolehlivost každého automatického systému obrazové analýzy. Oblasti obrazu, homogenní vzhledem k nějaké, obvykle texturní nebo spektrální míře a které jsou výsledkem segmentace, jsou následně analyzovány v interpretační části metod. Kapitola popisuje několik nových metod neřízené segmentace textur, založených na markovských prostorových modelech s neznámým počtem tříd. Tyto metody jsou intenzivně testovány na Pražském segmentačním benchmarku při použití běžných segmentačních kriterií. Výsledky těchto komplexních testů ukazují, že naše metody předčí některé publikované alternativní segmentační metody textur.

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

    BD - Information theory

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Pattern Recognition

  • ISBN

    978-953-7619-24-4

  • Number of pages of the result

    22

  • Pages from-to

  • Number of pages of the book

    536

  • Publisher name

    In-Tech

  • Place of publication

    Vienna

  • UT code for WoS chapter