Bayesian vector auto-regression model with Laplace errors applied to financial market data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F10%3A00346969" target="_blank" >RIV/67985556:_____/10:00346969 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Bayesian vector auto-regression model with Laplace errors applied to financial market data
Original language description
The article presents alternative version of Bayesian vector auto-regression model with Laplace distributed innovations. Bayesian estimation in such model is more computationally demanding than estimation in a model with normally distributed innovations,but because of the heavier tails of Laplace distribution, it is more robust. In the article I try to present the way of proceeding with the estimation, obtaining a full posterior distribution of the parameters as a result. At the end an efficient algorithm is sketched, but this part of the research is still unfinished.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of Mathematical Methods in Economics 2010
ISBN
978-80-7394-218-2
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
—
Publisher name
University of South Bohemia, Faculty of Economics
Place of publication
České Budějovice
Event location
České Budějovice
Event date
Sep 8, 2010
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—