General Chebyshev type inequalities for universal integral
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F12%3A00375889" target="_blank" >RIV/67985556:_____/12:00375889 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ins.2011.10.016" target="_blank" >http://dx.doi.org/10.1016/j.ins.2011.10.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2011.10.016" target="_blank" >10.1016/j.ins.2011.10.016</a>
Alternative languages
Result language
angličtina
Original language name
General Chebyshev type inequalities for universal integral
Original language description
A new inequality for the universal integral on abstract spaces is obtained in a rather general form. As two corollaries, Minkowski?s and Chebyshev?s type inequalities for the universal integral are obtained. The main results of this paper generalize someprevious results obtained for special fuzzy integrals, e.g., Choquet and Sugeno integrals. Furthermore, related inequalities for seminormed integral are obtained.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP402%2F11%2F0378" target="_blank" >GAP402/11/0378: Aggregation of knowledge and expectations in the models of mathematical economics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Information Sciences
ISSN
0020-0255
e-ISSN
—
Volume of the periodical
187
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
171-178
UT code for WoS article
000300201600011
EID of the result in the Scopus database
—