All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Revealing Replicating Structures in Multiway Data: A Novel Tensor Decomposition Approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F12%3A00376327" target="_blank" >RIV/67985556:_____/12:00376327 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-28551-6_37" target="_blank" >http://dx.doi.org/10.1007/978-3-642-28551-6_37</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-28551-6_37" target="_blank" >10.1007/978-3-642-28551-6_37</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Revealing Replicating Structures in Multiway Data: A Novel Tensor Decomposition Approach

  • Original language description

    A novel tensor decomposition is proposed to make it possible to identify replicating structures in complex data, such as textures and patterns in music spectrograms. In order to establish a computational framework for this paradigm, we adopt a multiway (tensor) approach. To this end, a novel tensor product is introduced, and the subsequent analysis of its properties shows a perfect match to the task of identification of recurrent structures present in the data. Out of a whole class of possible algorithms, we illuminate those derived so as to cater for orthogonal and nonnegative patterns. Simulations on texture images and a complex music sequence confirm the benefits of the proposed model and of the associated learning algorithms.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA102%2F09%2F1278" target="_blank" >GA102/09/1278: Advanced methods of blind source separation and blind deconvolution</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Latent Variable Analysis and Signal Separation

  • ISBN

    978-3-642-28550-9

  • ISSN

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    297-305

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Tel Aviv

  • Event date

    Mar 12, 2012

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article