On Revealing Replicating Structures in Multiway Data: A Novel Tensor Decomposition Approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F12%3A00376327" target="_blank" >RIV/67985556:_____/12:00376327 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-28551-6_37" target="_blank" >http://dx.doi.org/10.1007/978-3-642-28551-6_37</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-28551-6_37" target="_blank" >10.1007/978-3-642-28551-6_37</a>
Alternative languages
Result language
angličtina
Original language name
On Revealing Replicating Structures in Multiway Data: A Novel Tensor Decomposition Approach
Original language description
A novel tensor decomposition is proposed to make it possible to identify replicating structures in complex data, such as textures and patterns in music spectrograms. In order to establish a computational framework for this paradigm, we adopt a multiway (tensor) approach. To this end, a novel tensor product is introduced, and the subsequent analysis of its properties shows a perfect match to the task of identification of recurrent structures present in the data. Out of a whole class of possible algorithms, we illuminate those derived so as to cater for orthogonal and nonnegative patterns. Simulations on texture images and a complex music sequence confirm the benefits of the proposed model and of the associated learning algorithms.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA102%2F09%2F1278" target="_blank" >GA102/09/1278: Advanced methods of blind source separation and blind deconvolution</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Latent Variable Analysis and Signal Separation
ISBN
978-3-642-28550-9
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
297-305
Publisher name
Springer
Place of publication
Heidelberg
Event location
Tel Aviv
Event date
Mar 12, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—