States in Lukasiewicz logic correspond to probabilities of rational polyhedra
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F12%3A00376409" target="_blank" >RIV/67985556:_____/12:00376409 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ijar.2011.10.007" target="_blank" >http://dx.doi.org/10.1016/j.ijar.2011.10.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2011.10.007" target="_blank" >10.1016/j.ijar.2011.10.007</a>
Alternative languages
Result language
angličtina
Original language name
States in Lukasiewicz logic correspond to probabilities of rational polyhedra
Original language description
It will be shown that probabilities of infinite-valued events represented by formulas in Lukasiewicz propositional logic are in one-to-one correspondence with tight probability measures over rational polyhedra in the unit hypercube. This result generalizes a recent work on rational measures of polyhedra and provides an elementary geometric approach to reasoning under uncertainty with states in Lukasiewicz logic.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
—
Volume of the periodical
53
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
435-446
UT code for WoS article
000302970000001
EID of the result in the Scopus database
—