All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Texture Recognition using Robust Markovian Features

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F12%3A00380288" target="_blank" >RIV/67985556:_____/12:00380288 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-32436-9_11" target="_blank" >http://dx.doi.org/10.1007/978-3-642-32436-9_11</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-32436-9_11" target="_blank" >10.1007/978-3-642-32436-9_11</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Texture Recognition using Robust Markovian Features

  • Original language description

    We provide a thorough experimental evaluation of several state-of-the-art textural features on four representative and extensive image data/-bases. Each of the experimental textural databases ALOT, Bonn BTF, UEA Uncalibrated, and KTH-TIPS2 aims at specific part of realistic acquisition conditions of surface materials represented as multispectral textures. The extensive experimental evaluation proves the outstanding reliable and robust performance of efficient Markovian textural features analytically derived from a wide-sense Markov random field causal model. These features systematically outperform leading Gabor, Opponent Gabor, LBP, and LBP-HF alternatives. Moreover, they even allow successful recognition of arbitrary illuminated samples using a single training image per material. Our features are successfully applied also for the recent most advanced textural representation in the form of 7-dimensional Bidirectional Texture Function (BTF).

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BD - Information theory

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computational Intelligence for Multimedia Understanding

  • ISBN

    978-3-642-32435-2

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    126-137

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Pisa

  • Event date

    Dec 13, 2011

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article