Extension of belief functions to infinite-valued events
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F12%3A00381759" target="_blank" >RIV/67985556:_____/12:00381759 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00500-012-0836-2" target="_blank" >http://dx.doi.org/10.1007/s00500-012-0836-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-012-0836-2" target="_blank" >10.1007/s00500-012-0836-2</a>
Alternative languages
Result language
angličtina
Original language name
Extension of belief functions to infinite-valued events
Original language description
We generalise belief functions to many-valued events which are represented by elements of Lindenbaum algebra of infinite-valued Łukasiewicz propositional logic. Our approach is based on mass assignments used in the Dempster?Shafer theory of evidence. A generalised belief function is totally monotone and it has Choquet integral representation with respect to a unique belief measure on Boolean events.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Soft Computing
ISSN
1432-7643
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
11
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
1851-1861
UT code for WoS article
000309879200005
EID of the result in the Scopus database
—