On Random Sets Independence and Strong Independence in Evidence Theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F12%3A00387908" target="_blank" >RIV/67985556:_____/12:00387908 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-29461-7_29" target="_blank" >http://dx.doi.org/10.1007/978-3-642-29461-7_29</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-29461-7_29" target="_blank" >10.1007/978-3-642-29461-7_29</a>
Alternative languages
Result language
angličtina
Original language name
On Random Sets Independence and Strong Independence in Evidence Theory
Original language description
Belief and plausibility functions can be viewed as lower and upper probabilities possessing special properties. Therefore, (conditional) independence concepts from the framework of imprecise probabilities can also be applied to its sub-framework of evidence theory. In this paper we concentrate ourselves on random sets independence, which seems to be a natural concept in evidence theory, and strong independence, one of two principal concepts (together with epistemic independence) in the framework of credal sets. We show that application of trong independence to two bodies of evidence generally leads to a model which is Beyond the framework of evidence theory. Nevertheless, if we add a condition on resulting focal elements, then strong independence reduces to random sets independence. Unfortunately, it is not valid no more for conditional independence.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP402%2F11%2F0378" target="_blank" >GAP402/11/0378: Aggregation of knowledge and expectations in the models of mathematical economics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Belief Functions: Theory and Applications
ISBN
978-3-642-29460-0
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
247-254
Publisher name
Springer
Place of publication
Heidelberg
Event location
Compiegne
Event date
May 9, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000312034100029