All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rotation and Noise Invariant Near-Infrared Face Recognition by means of Zernike Moments and Spectral Regression Discriminant Analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F13%3A00390234" target="_blank" >RIV/67985556:_____/13:00390234 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1117/1.JEI.22.1.013030" target="_blank" >http://dx.doi.org/10.1117/1.JEI.22.1.013030</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/1.JEI.22.1.013030" target="_blank" >10.1117/1.JEI.22.1.013030</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rotation and Noise Invariant Near-Infrared Face Recognition by means of Zernike Moments and Spectral Regression Discriminant Analysis

  • Original language description

    Face recognition is a rapidly growing research area, which is based heavily on the methods of machine learning, computer vision, and image processing.We propose a rotation and noise invariant near-infrared face-recognition system using an orthogonal invariant moment, namely, Zernike moments (ZMs) as a feature extractor in the near-infrared domain and spectral regression discriminant analysis (SRDA) as an efficient algorithm to decrease the computational complexity of the system, enhance the discrimination power of features, and solve the ?small sample size problem simultaneously. Experimental results based on the CASIA NIR database show the noise robustness and rotation invariance of the proposed approach. Further analysis shows that SRDA as a sophisticated technique, improves the accuracy and time complexity of the system compared with other data reduction methods such as linear discriminant analysis.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP103%2F11%2F1552" target="_blank" >GAP103/11/1552: Moments and Moment Invariants in Image Analysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Electronic Imaging

  • ISSN

    1017-9909

  • e-ISSN

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    1-11

  • UT code for WoS article

    000322079000003

  • EID of the result in the Scopus database