Discrete pseudo-integrals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F13%3A00391390" target="_blank" >RIV/67985556:_____/13:00391390 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ijar.2012.07.008" target="_blank" >http://dx.doi.org/10.1016/j.ijar.2012.07.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2012.07.008" target="_blank" >10.1016/j.ijar.2012.07.008</a>
Alternative languages
Result language
angličtina
Original language name
Discrete pseudo-integrals
Original language description
Integration of simple functions is a corner stone of general integration theory and it covers integration over finite spaces discussed in this paper. Different kinds of decomposition and subdecomposition of simple functions into basic functions sums, aswell as different kinds of pseudo-operations exploited for integration and summation result into several types of integrals, including among others, Lebesgue, Choquet, Sugeno, pseudo-additive, Shilkret, PAN, Benvenuti and concave integrals. Some basic properties of introduced discrete pseudoconcave integrals are discussed, and several examples of new integrals are given.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP402%2F11%2F0378" target="_blank" >GAP402/11/0378: Aggregation of knowledge and expectations in the models of mathematical economics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
—
Volume of the periodical
54
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
357-364
UT code for WoS article
000316166200002
EID of the result in the Scopus database
—