Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F13%3A00396774" target="_blank" >RIV/67985556:_____/13:00396774 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/TSP.2013.2269903" target="_blank" >http://dx.doi.org/10.1109/TSP.2013.2269903</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2013.2269903" target="_blank" >10.1109/TSP.2013.2269903</a>
Alternative languages
Result language
angličtina
Original language name
Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations
Original language description
CANDECOMP/PARAFAC (CP) has found numerous applications in wide variety of areas such as in chemometrics, telecommunication, data mining, neuroscience, separated representations. For an order- tensor, most CP algorithms can be computationally demanding due to computation of gradients which are related to products between tensor unfoldings and Khatri-Rao products of all factor matrices except one. These products have the largest workload in most CP algorithms. In this paper, we propose a fast method to deal with this issue. Themethod also reduces the extra memory requirements of CP algorithms. As a result, we can accelerate the standard alternating CP algorithms 20?30 times for order-5 and order-6 tensors, and even higher ratios can be obtained for higher order tensors (e.g., N>=10). The proposed method is more efficient than the state-of-the-art ALS algorithm which operates two modes at a time (ALSo2) in the Eigenvector PLS toolbox, especially for tensors with order N>=5 and high rank.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA102%2F09%2F1278" target="_blank" >GA102/09/1278: Advanced methods of blind source separation and blind deconvolution</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Signal Processing
ISSN
1053-587X
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
19
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
4834-4846
UT code for WoS article
000324342900016
EID of the result in the Scopus database
—