Entropy-driven phase transition in low-temperature antiferromagnetic Potts models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F14%3A00429507" target="_blank" >RIV/67985556:_____/14:00429507 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11620/14:10285693
Result on the web
<a href="http://dx.doi.org/10.1007/s00220-014-2005-1" target="_blank" >http://dx.doi.org/10.1007/s00220-014-2005-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00220-014-2005-1" target="_blank" >10.1007/s00220-014-2005-1</a>
Alternative languages
Result language
angličtina
Original language name
Entropy-driven phase transition in low-temperature antiferromagnetic Potts models
Original language description
We prove the existence of long-range order at sufficiently low temperatures, including zero temperature, for the three-state Potts antiferromagnet on a class of quasi-transitive plane quadrangulations, including the diced lattice. More precisely, we showthe existence of (at least) three infinite-volume Gibbs measures, which exhibit spontaneous magnetization in the sense that vertices in one sublattice have a higher probability to be in one state than in either of the other two states. For the special case of the diced lattice, we give a good rigorous lower bound on this probability, based on computer-assisted calculations that are not available for the other lattices.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
—
Volume of the periodical
330
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
56
Pages from-to
1339-1394
UT code for WoS article
000339156800013
EID of the result in the Scopus database
—