Sum-of-squares observer design for a polynomial system with unknown time delays
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F14%3A00429921" target="_blank" >RIV/67985556:_____/14:00429921 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/ICCA.2014.6870967" target="_blank" >http://dx.doi.org/10.1109/ICCA.2014.6870967</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCA.2014.6870967" target="_blank" >10.1109/ICCA.2014.6870967</a>
Alternative languages
Result language
angličtina
Original language name
Sum-of-squares observer design for a polynomial system with unknown time delays
Original language description
The topic of the paper is a procedure for observer design for polynomial systems. The design is based on sum-of- squares through construction of suitable Lyapunov-Krasovskii functionals. As the resulting problem is not convex, an iterative formula is proposed to obtain the solution. Estimates of obser- vation error are derived, the usage of the method is illustrated by an example.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 2014 11th IEEE International Conference on Control & Automation (ICCA)
ISBN
978-1-4799-2836-1
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
479-484
Publisher name
IEEE
Place of publication
Taichung
Event location
Taichung
Event date
Jun 18, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000346501200082