All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Diffusion Estimation Of State-Space Models: Bayesian Formulation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F14%3A00431804" target="_blank" >RIV/67985556:_____/14:00431804 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/MLSP.2014.6958920" target="_blank" >http://dx.doi.org/10.1109/MLSP.2014.6958920</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/MLSP.2014.6958920" target="_blank" >10.1109/MLSP.2014.6958920</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Diffusion Estimation Of State-Space Models: Bayesian Formulation

  • Original language description

    The paper studies the problem of decentralized distributed estimation of the state-space models from the Bayesian viewpoint. The adopted diffusion strategy, consisting of collective adaptation to new data and combination of posterior estimates, is derived in general model-independent form. Its particular application to the celebrated Kalman filter demonstrates the ease of use, especially when the measurement model is rewritten into the exponential family form and a conjugate prior describes the estimated state.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GP14-06678P" target="_blank" >GP14-06678P: Distributed dynamic estimation in diffusion networks</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 24th IEEE International Workshop on Machine Learning for Signal Processing (MLSP2014)

  • ISBN

    978-1-4799-3693-9

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

  • Publisher name

    IEEE

  • Place of publication

    Reims

  • Event location

    Reims

  • Event date

    Sep 21, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000393407800075