Discrete bipolar universal integrals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F14%3A00432224" target="_blank" >RIV/67985556:_____/14:00432224 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.fss.2014.02.002" target="_blank" >http://dx.doi.org/10.1016/j.fss.2014.02.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2014.02.002" target="_blank" >10.1016/j.fss.2014.02.002</a>
Alternative languages
Result language
angličtina
Original language name
Discrete bipolar universal integrals
Original language description
The concept of universal integral, recently proposed, generalizes the Choquet, Shilkret and Sugeno integrals. Those integrals admit a discrete bipolar formulation, useful in those situations where the underlying scale is bipolar. In this paper we proposethe concept of discrete bipolar universal integral, in order to provide a common framework for bipolar discrete integrals, including as special cases the discrete Choquet, Shilkret and Sugeno bipolar integrals. Moreover we provide two different axiomatic characterizations of the proposed discrete bipolar universal integral.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP402%2F11%2F0378" target="_blank" >GAP402/11/0378: Aggregation of knowledge and expectations in the models of mathematical economics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
252
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
55-65
UT code for WoS article
000341480600005
EID of the result in the Scopus database
—