A Nonlinear Domain Decomposition Technique for Scalar Elliptic PDEs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F14%3A00436705" target="_blank" >RIV/67985556:_____/14:00436705 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-05789-7_84" target="_blank" >http://dx.doi.org/10.1007/978-3-319-05789-7_84</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-05789-7_84" target="_blank" >10.1007/978-3-319-05789-7_84</a>
Alternative languages
Result language
angličtina
Original language name
A Nonlinear Domain Decomposition Technique for Scalar Elliptic PDEs
Original language description
Nonlinear problems are ubiquitous in a variety of areas, including fluid dynamics, biomechanics, viscoelasticity and finance, to name a few. A number of computational methods exist already for solving such problems, with the general approach being Newton-Krylov type methods coupled with an appropriate preconditioner. However, it is known that the strongest nonlinearity in a domain can directly impact the convergence of Newton-type algorithms. Therefore, local nonlinearities may have a direct impact on the global convergence of Newton?s method, as illustrated in both [3] and [5]. Consequently, Newton-Krylov approaches can be expected to struggle when faced with domains containing local nonlinearities.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100750802" target="_blank" >IAA100750802: Nonsmooth and set-valued analysis in mechanics and thermomechanics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Domain Decomposition Methods in Science and Engineering XXI
ISBN
978-3-319-05788-0
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
869-877
Publisher name
Springer
Place of publication
Cham
Event location
Le Chesnay Cedex
Event date
Jun 25, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—