A Note on Natural Extensions in Abstract Algebraic Logic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F15%3A00436388" target="_blank" >RIV/67985556:_____/15:00436388 - isvavai.cz</a>
Alternative codes found
RIV/67985807:_____/15:00436388
Result on the web
<a href="http://dx.doi.org/10.1007/s11225-014-9594-8" target="_blank" >http://dx.doi.org/10.1007/s11225-014-9594-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11225-014-9594-8" target="_blank" >10.1007/s11225-014-9594-8</a>
Alternative languages
Result language
angličtina
Original language name
A Note on Natural Extensions in Abstract Algebraic Logic
Original language description
Transfer theorems are central results in abstract algebraic logic that allow to generalize properties of the lattice of theories of a logic to any algebraic model and its lattice of filters. Their proofs sometimes require the existence of a natural extension of the logic to a bigger set of variables. Constructions of such extensions have been proposed in particular settings in the literature. In this paper we show that these constructions need not always work and propose a wider setting (including all finitary logics and those with countable language) in which they can still be used.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-14654S" target="_blank" >GA13-14654S: An Order-Based Approach to Non-Classical Propositional and Predicate Logics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Studia Logica
ISSN
0039-3215
e-ISSN
—
Volume of the periodical
103
Issue of the periodical within the volume
4
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
815-823
UT code for WoS article
000358588600008
EID of the result in the Scopus database
2-s2.0-84938212488