All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tensor Deflation for CANDECOMP/PARAFAC - Part I: Alternating Subspace Update Algorithm

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F15%3A00448255" target="_blank" >RIV/67985556:_____/15:00448255 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/TSP.2015.2458785" target="_blank" >http://dx.doi.org/10.1109/TSP.2015.2458785</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TSP.2015.2458785" target="_blank" >10.1109/TSP.2015.2458785</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tensor Deflation for CANDECOMP/PARAFAC - Part I: Alternating Subspace Update Algorithm

  • Original language description

    CANDECOMP/PARAFAC (CP) approximates multiway data by sum of rank-1 tensors. Unlike matrix decomposition, the procedure which estimates the best rank-tensor approximation through R sequential best rank-1 approximations does not work for tensors, because the deflation does not always reduce the tensor rank. In this paper, we propose a novel deflation method for the problem. When one factor matrix of a rank-CP decomposition is of full column rank, the decomposition can be performed through (R-1) rank-1 reductions. At each deflation stage, the residue tensor is constrained to have a reduced multilinear rank. For decomposition of order-3 tensors of size RxRxR and rank-R estimation of one rank-1 tensor has a computational cost of O(R^3) per iteration which is lower than the cost O(R^4) of the ALS algorithm for the overall CP decomposition. The method can be extended to tracking one or a few rank-one tensors of slow changes, or inspect variations of common patterns in individual datasets.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA14-13713S" target="_blank" >GA14-13713S: Tensor Decomposition Methods and Their Applications</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Signal Processing

  • ISSN

    1053-587X

  • e-ISSN

  • Volume of the periodical

    63

  • Issue of the periodical within the volume

    22

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    5924-5938

  • UT code for WoS article

    000362746500004

  • EID of the result in the Scopus database